

A Programming Model
for

Migrating Multicore Applications

Simplifying multicore migration
White Paper
November 9, 2010

Ted Gribb
PolyCore Software Inc.
http://www.polycoresoftware.com/

Abstract
Several multicore architectures and programming models are available for developers to use when
migrating applications to multicore platforms. Here, we will look at a multicore programming model as
applied to migrating an application running across multiple single core DSPs to running on multiple
multicore DSPs.

A Programming Model for Migrating Multicore Applications

 Copyright 2010 – PolyCore Software, Inc. 2

Moving to Multicore

Multi-chip, multi-processing, multi-execution path have been available technologies for decades
and have been used to solve complex problems and improve performance. Since single core
technology could address the vast majority of compute needs with constantly increasing
performance, the tools and buzz was centered on single core processors.

The computer world is changing as should be the case. Three factors that have been driving the
change continue to be the key drivers:

1. Power: increasing the MHz for a single core is approaching the physical limits. And,
whether the product is battery operated or tethered by a power cord, developers are
seeking to improve the performance/watt ratio.

2. Performance: Application features and functionality will continue to expand which fuels
increasing compute performance.

3. Consolidation: The progression of more capabilities on a single chip. Applications
currently running on multiple processors will move to multicore, and, applications
currently running on multicore will move to denser multicore chips.

The Programming Model chosen for multicore applications must have the flexibility to address
all three factors. While addressing power has been the focus of many single core applications
moving to multicore, the discussion presented addresses the later two factors – consolidation and
performance.

The broad range of platform technologies offers the system designer choices for the platform that
would best fits the application’s requirements. A sample of the hardware options include
homogeneous and heterogeneous multicore processors, processors with accelerator integration
as well as processor with optimized mechanisms for, inter-processor (IPC)/core communications
(transports). The software paradigms executing on multicore processors also have variants like
SMPi (Symmetric Multiprocessing), AMPii (Asymmetric Multiprocessing), CPU affinity and
virtualization, plus, the combinations and permutations of the models indicated above

Programming Model

The Programming Model used in any multicore software paradigms needs to be consistent, have
the flexibility to scale and enable optimizations across various hardware and software multicore
and multi-processor platforms which are available today and are being planned.

The Multicore Association (MCA)3iii communications API – MCAPI, and TI DSPs are used to
demonstrate a programming model for applications consolidating to denser processors and then
looking for better ways to execute the application in a multicore environment.

A Programming Model for Migrating Multicore Applications

 Copyright 2010 – PolyCore Software, Inc. 3

MCAPI has a concept called node which is defined as a logical abstraction that can be mapped to
many entitiesiv such as process, thread, hardware accelerator, or a processor core. For this
example, a node will be the entire application that executes on a single DSP.

The application is encapsulated with MCAPI calls and we assume that the IPC transports are
available.

{ MCAPI initialization }
{ MCAPI receive data }

[DSP Application Code]

{ MCAPI send data }

Now that our application is set up for MCAPI as encapsulated modules, the first pass on testing
could be performed using any of the following environments:

1. Windows provided that non-Windows calls are handled - such as an OS simulator on
Windows

2. Hardware simulator where communications links are simulated
3. Existing single core hardware
4. Multicore hardware

Initial testing on target hardware could be challenging because of the number of variables
introduced and this subject better handled by the debug experts. A simulated environment
provides more control. However, eventually, the application will be moved to the target
platform.

A Programming Model for Migrating Multicore Applications

 Copyright 2010 – PolyCore Software, Inc. 4

Applying the Programming Model

Let’s look at the application moving the single core application to a multicore processor using
Texas Instruments’ (TI) DSPs such as the TMS320C6474 and then the TMS320C6678. The
MCAPI enabled application communicates with other DSPs in the architecture which may be a
single core DSP and/or a multicore C6474. That is, the same application source code as node(s)
may be run as:

1. A single core DSP communicating to other single core DSPs
2. A multicore DSP communicating to DSPs on the same chip
3. A single core DSP communication to nodes on a multi-core DSP processor
4. A multicore DSP communicating to local DSPs or DSPs on a different multi/single core

processor

A Programming Model for Migrating Multicore Applications

 Copyright 2010 – PolyCore Software, Inc. 5

By extension, moving to denser processors, that is, more cores on a chip, the MCAPI enabled
application source code can move without source code change.

In the previous example, note that application had six nodes that mapped one-to-one in a dual
C6474 configuration. When moving to the C6678 which has eight cores, the designer/architect
has two extra cores. The additional two cores could be used as backup or to expand
functionality or to improve the overall system performance. For this system, the two cores will
be used to improve performance.

Optimizing the Application for Multicore

The MCAPI enabled application nodes provide flexibility in deploying the nodes throughout the
system. Nodes can be grouped onto cores for systems with a memory protected operating
environment and/or replicated to improve systems performance. By grouping the nodes, the
system architect may be able to balance the operational load by having nodes with lesser
resource needs share the resource. Should a node need substantially more resources, the node
could be assigned to a resource and replicated which would allow more data sets to be processed
in parallel.

A Programming Model for Migrating Multicore Applications

 Copyright 2010 – PolyCore Software, Inc. 6

The following diagram shows an application with four nodes that are mapped to three
configurations. In the top configuration all nodes operate on a single core. In the dual core
architecture, the nodes have different allocations. The middle mapping shows an optimized
configuration where the resource load for the first two nodes is approximately the same as the
later two nodes. Should the architect find that the nodes have very different resource loads, the
lower configuration may be the best fit for the application. Important to note that the nodes are
redeployed using the same application source code.

Returning to the application running on TI DSPs, the additional two DSPs could be used by
node(s) that are more resource intensive. Suppose that N2 is substantially more resource
intensive. Then, the architect may replicate N2 and deploy N2 on the seventh and eighth DSP
which should yield an improved system performance. The new configuration is seen in the
following diagram.

A Programming Model for Migrating Multicore Applications

 Copyright 2010 – PolyCore Software, Inc. 7

Alternately, the additional core could be used to improve a single node’s performance. As the
developer learns more about the application’s behavior, a “resource intensive” segment of a node
may be identified. The “resource intensive” segment may be separated from the original node,
encapsulate as described earlier and made into a new node. This new node could be move to the
additional core(s) where a improvement in performance could be realized.

Programming Model for today and for the Next Generation

Multicore platforms are being used and we know more applications will be moving to multicore
platforms. Most applications have been written as serial tasks or processes which should be well
defined execution blocks. Architects can employ the programming model with MCAPI
described in this paper to move their application to multicore platforms with minimal effort.

Also, the MCAPI enabled application has the benefit to quickly move to the next generation
multicore platform.

For this discussion, the nodes were deployed to homogeneous cores. The programming model
readily extends to heterogeneous cores and processor platforms. Thus, a node could be allocated
to a core that would better fit the node’s workload.

Economic benefits for the manufacturer are that the same application source code could be used
across a product line where the underlying platform differs by compute power. An entry level
product could have a single or fewer cores platform. A mid-range product could have more

A Programming Model for Migrating Multicore Applications

 Copyright 2010 – PolyCore Software, Inc. 8

compute power. The high end product could have a heterogeneous platform. Regardless of the
products underlying platform, the same application source would be used.

By adopting the programming model based on the MCA standards, the developer is able to start
using multicore platforms today. As more is learned about the applications operation, the
application can be modified to operate as more nodes with a result of improved performance and
improved scalability for more core platforms and next generation platforms. The programming
model works for today’s platform and prepares the application for tomorrow’s platforms.

i SMP - http://en.wikipedia.org/wiki/Symmetric_Multi-Processing
ii AMP - http://en.wikipedia.org/wiki/Asymmetric_multiprocessing
iii MultiCore Assocation - http://www.multicore-association.org
iv Multicore Communications API Specification, MCAPI - http://www.multicore-
association.org/workgroup/mcapi.php

Trademarks
All trademarks are the property of their respective owners.

