
 Copyright 2010 – PolyCore Software, Inc. 1

A unified multicore programming model

Simplifying multicore migration

By Sven Brehmer

Abstract

There are a number of different multicore architectures and programming models available, making it

challenging for developers to choose which one to use when migrating applications to multicore. We

will look at some of the drivers for and challenges with multicore, discuss the importance of multicore

programming models and how to take advantage of multicore standards and rapid prototyping to ease

application multicore migrations for ARM Coretex-A9 MPCore.

PolyCore Software, Inc.

http://www.polycoresoftware.com

Micrium, Inc.

http://www.micrium.com

 Copyright 2010 – PolyCore Software, Inc. 2

Table of Contents
1. Multicore Drivers and Challenges .. 3

1.1. Multicore Drivers .. 3
1.1.1. Performance.. 3

1.1.2. Power Consumption ... 3
1.1.3. Consolidation.. 3

1.2. Multicore Challenges .. 3
1.2.1. Software Infrastructure ... 3
1.2.2. Standards .. 4

1.2.3. The Human Element ... 4
2. Programming Models ... 5

2.1. Models ... 5
2.2. Which one should I use? ... 5

3. Example Application and Platform .. 6

3.1. Application Migration Flow .. 6
3.1.1. Analyze ... 6

3.2. Improve Performance and Capabilities With Multicore ... 7
3.3. We Need a Communications Model ... 7

3.4. Multicore Standards .. 7
3.4.1. MCAPI Communication Modes ... 8

3.4.2. MCAPI Enabling .. 9
3.5. OS Considerations ... 10

4. Rapid Prototyping ... 11

4.1. Analysis ... 11
4.2. Implementation .. 11

4.3. Verification & Optimization ... 12

4.4. Migrate in Steps... 13

5. Conclusions .. 14
6. References .. 15

 Copyright 2010 – PolyCore Software, Inc. 3

 1. Multicore Drivers and Challenges

The two most common reasons for considering migrating to multicore are performance, power

consumption and consolidation. The demand for more features, functionality and richer user

experiences are driving the demand for higher bandwidth data streams and increasing application

complexity. To address those user demands, more processing power is needed within a reduced power

consumption envelope. The answer is multicore.

 1.1. Multicore Drivers

 1.1.1. Performance

Through concurrency multicore provides more potential processing power enabling applications to

increase functionality, capabilities and therefore leading to complexity. Multicore also offers higher

throughput and lower latencies supporting the ever increasing demand for streaming data.

 1.1.2. Power Consumption

Multiple cores can offer the same or higher performance than a single processor at lower clock

frequency. Power consumption determines the longevity of a battery charge for mobile devices, cooling

requirements and therefore mean time between failure (MTBF) for infrastructure devices and energy

costs for all devices.

 1.1.3. Consolidation

Systems with multiple discrete processors can potentially be consolidated into a single or fewer

multicore chip, thus reducing size and the bill of material and cost.

Performance and power consumption characteristics are therefore key factors in our continued ability

to provide competitive solutions to end users, and reducing cost. However multicore platforms/devices

can only take advantage of these benefits provided that there is sufficient opportunity for concurrency

in the application.

 1.2. Multicore Challenges

 1.2.1. Software Infrastructure

The software infrastructure, both run-time software and development tools have been developed for a

single processor.

Programming languages, including C and C++, the most commonly used programming languages in

embedded systems, are almost exclusively sequential. There are a few language extensions originating

from High Performance Computing (HPC) such as OpenMP
1
, primarily targeting shared memory

systems and MPI
2
 for widely distributed computing.

 Copyright 2010 – PolyCore Software, Inc. 4

Besides SMP operating systems and hypervisors, for multicore platforms with homogenous cores and

shared memory, there is little in the way run-time multicore support. Because the SMP model is based

on shared memory, scalability will be a challenge with an increasing number of cores per chip,

competing for access to the memory.

As with run-time, besides tools focusing on SMP environment, not much multicore "relief" is found in

the tools department. There is an emergence of tools addressing concurrency, but little in the way of

standards to "guarantee" their longevity.

 1.2.2. Standards

Industry organizations such as for example the Multicore Association
3
 are providing open standards for

multicore, with MCAPI
4
 1.0 released two years ago and MRAPI

5
 1.0 and MCAPI version 2.0 to be

released before the end of 2010. Even so multicore standards are still in the emerging stage. Multiple

areas of multicore will benefit from standardization and some coherency between standardization in

those different areas is desirable. MCAPI and MRAPI for example share some concepts, which makes

it easier if you know one of them to understand the other and to use them together.

 1.2.3. The Human Element

Another aspect of dealing with multicore is the concurrency, which makes it more difficult to

understand, we tend to think of and solve problems in a step wise fashion. It's also challenging for tools

to provide easy to understand information to the developer about many concurrent events.

 Copyright 2010 – PolyCore Software, Inc. 5

 2. Programming Models

 2.1. Models

An application can be composed in many different ways and several different programming models can

be employed with multicore. Some of the models are:

 Task parallelism, where a stream of operations or functions can be organized into tasks that can run

concurrently on multiple cores. The efficiency of this model will depend on how independent the

operations of the tasks are.

 Data parallelism, where the data being operated on can be divided into chucks that can be processed

concurrently on different cores. The efficiency of this model will depend on how independent the

chunks of data are.

 SMP
6
 - symmetric multiprocessing, uses a single operating system on multiple cores. Processes,

tasks or threads are scheduled to run on the different cores as determined by the scheduler. This

model requires homogenous cores and shared memory. In some cases the processes/tasks/threads

are "pinned" to cores, for various reasons such as for example, a function requires exclusive access

to a core to meet performance requirements or a core is dedicated to a legacy application. This is

sometimes referred to as bound multiprocessing (BMP), as it is not symmetric any more.

 AMP
7
 - asymmetric multiprocessing, may use multiple instantiations of the same or different

operating systems, or no OS or a combination of OS and no OS. Processes, tasks or threads are

generally assigned specific cores and scheduled to run as determined by the scheduler of the OS on

that core. This model works with homogenous and heterogeneous cores and shared memory or non-

uniform memory architectures (NUMA).

 2.2. Which one should I use?

The application characteristics and behavior should drive the underlying multicore platform. A modular

application makes it easier to migrate to multicore regardless of the chosen model, and the hardware

may or may not already be specified. A consistent programming model that works for both SMP and

AMP is a plus. It simplifies migration and future development (code reuse), allowing the application to

be deployed in either or a combination of both models in the same system (combined models will be

increasingly common as the core count goes up) . A standardized unified model broadens the available

ecosystem, both run-time software and development tools, and better preserves software across product

lines and for future product generations.

 Copyright 2010 – PolyCore Software, Inc. 6

 3. Example Application and Platform

We are going to take look at a specific application and multicore platform to exemplify the application

migration process and flow. It is a packet processing application running on a single core ARM Cortex-

A9, controlled by an RTOS. The next generation product must provide more packet processing

functionality, more advanced configurability and management capabilities and substantially higher

throughput. The hardware platform is only partially defined, it will include one or more ARM Cortex-

A9 MPCores, and potentially DSP's and FPGA's. Simulators will be used to allow modeling of the

platform, to determine that the requirements can be met, before committing to the hardware platform.

 3.1. Application Migration Flow

 3.1.1. Analyze

The first step is to find the hot spots. If a function that uses 50% of the CPU cycles is sped up by a

factor of 2 we have gained 25%, whereas if a function that takes 10% of the CPU cycles is sped up by a

factor of 5, we have gained 8%. With a proper and tools supported method the "higher hanging fruit"

can be addressed later if so required.

 Copyright 2010 – PolyCore Software, Inc. 7

 3.2. Improve Performance and Capabilities With Multicore

As a first step, we try one ARM Cortex-A9 MPCore, with 4 cores, running SMP Linux on 2 of the

cores (configuration, management, NW connectivity) and separate instantiations on the RTOS on the

other cores.

We find that this configuration is not sufficient to meet our requirements and we add one ARM (quad)

MPCore and two 3-core DSP’s. The RTOS is used on the additional ARM cores and a DSP OS is used

for the DSP cores.

We again find that we need more performance and decide to add two FPGA’s that include ARM

Cortex-A9 MPCore (dual). Although not needed immediately the FPGA soft cores must also be

supported by our programming model, for future expansion. The RTOS will control the soft cores.

In order to make this work we need to effectively communicate between the cores. This communication

includes:

 Multiple on-chip buses

 Multiple chip-interconnects

 Multiple types of cores

 Multiple OS’es

 3.3. We Need a Communications Model

To handle this multitude of hardware and software we need to have a communications model that is

scalable across a number of different cores and can provide a unified communications API across

different OS'es and transports.

Explicit communication simplifies synchronization across the different entities in the platform. Because

the platform includes both on-chip inter-core shared memory and NUMA inter-chip transports, both

copy by reference and data movement will be used (on and off chip).

We also need a long term applicable communications model that can be used in future generation

products.

 3.4. Multicore Standards

MCAPI a standard communications API defined specifically for multicore communications will be

used. MCAPI is a source level API that allows implementations to abstract the application from the

multitudes of cores, transports and OS'es as discussed above.

 Copyright 2010 – PolyCore Software, Inc. 8

MCAPI provides:

 Messages, Packet & Scalar Channels.

 Management Functions

 Basic Topology Discovery

 Standardized Programming Model

MCAPI is defined by a cross industry Multicore Association working group, and is today supported by

multiple vendors.

 3.4.1. MCAPI Communication Modes

Some of the key concepts in MCAPI are:

Endpoints, the start and end points of the communication, defined by a topology unique 3-tuple

<domain, node, port>.

Messages are connectionless, offers per message priority (FIFO order per priority level), buffered

communication with blocking and non-blocking functionality.

Packet channels are connected, unidirectional with per channel priority, FIFO order,), buffered

communication with blocking and non-blocking functionality.

Packet channels are connected, unidirectional with per channel priority, FIFO order,), scalar (8, 16, 32

or 64 bit) communication with blocking functionality.

 Copyright 2010 – PolyCore Software, Inc. 9

 3.4.2. MCAPI Enabling

To allow the function distributed across the cores to communicate, the functions are encapsulated with

communication primitives.

Original application:

function_1();

function_2();

function_3();

Distributed application:

Core 1:

recv(); Receive data

function_1();

send(); Send result

Core 2:

recv(); Receive data

function_2();

 Copyright 2010 – PolyCore Software, Inc. 10

 send(); Send result

Core 3:

recv(); Receive data

function_3();

send(); Send result

 3.5. OS Considerations

Multiple OS’es are being used as they provide different capabilities and allow this new platform to

increase both its functionality and performance.

Linux provides access to configuration and management capabilities as well as rich-functionality

networking stack. The RTOS provides high performance, predictable response times, configurability

and scalability. It also allows us to use the same operating system for the ARM cores and the soft cores

(and potentially also on the DSP's). The DSP OS has similar characteristics to the RTOS.

Of key importance is that the same communications programming model is used for the three OS'es.

 Copyright 2010 – PolyCore Software, Inc. 11

 4. Rapid Prototyping

As discussed above a number of factors come into play when migrating applications to multicore. It is

very unlikely that the first assumptions based on the analysis and the multicore platform were perfect.

A few or more iterations of analysis and refined assumptions will be required before an optimal

performance is achieved and the functionality and performance requirements are met.

It is therefore important to have development tools that allows for rapid analysis, implementation,

verification and optimization.

 4.1. Analysis

 4.2. Implementation

Application Level

 Copyright 2010 – PolyCore Software, Inc. 12

Topology Level

 4.3. Verification & Optimization

Reiterate until requirements are met.

 Copyright 2010 – PolyCore Software, Inc. 13

 4.4. Migrate in Steps

It is often a good idea to migrate your application in steps. Start with the hotspots and divide in "big

chunks" first. Once the first step is working, go to the next level and divide into smaller chunks. Having

tools support makes it easier to migrate in steps.

Start with big chunks.

Refine.

 Copyright 2010 – PolyCore Software, Inc. 14

 5. Conclusions

We have discussed some steps that you can take to simplify migration your application to the ARM

Cortex-A9 MPCore as well as how you can integrate with other parts in your multicore platform.

A unified standardized programming model for AMP and SMP will provide flexibility today and for

next generation products, as it abstracts some of the complexities brought on by multicore.

Tools that allow rapid prototyping and exploration makes it easier to match the application to the

multicore platform and they also makes it easier to migrate gradually.

Migrate the well known application blocks and improve performance through iteration.

 Copyright 2010 – PolyCore Software, Inc. 15

 6. References
1
 OpenMP - http://openmp.org/wp/

2
 MPI - http://en.wikipedia.org/wiki/Message_Passing_Interface

3
 Multicore - http://www.multicore-association.org

4
 MCAPI - http://www.multicore-association.org/workgroup/mcapi.php

5
 MRAPI - http://www.multicore-association.org/workgroup/mrapi.php

6
 AMP - http://en.wikipedia.org/wiki/Asymmetric_multiprocessing

7
 SMP - http://en.wikipedia.org/wiki/Symmetric_Multi-Processing

ABOUT POLYCORE SOFTWARE, INC.

PolyCore Software, Inc., provides development tools and run-time solutions to simplify application

development and improve development productivity for multicore, multi-processor architectures.

Improvements in time to market, development costs and risks are achieved through software reuse, ease

of use development tools, and the generation of optimized run time program elements. Design for

today’s architectures and run on tomorrow’s architectures.

ABOUT MICRIUM

Micrium provides the highest quality embedded software components by way of cleanest source code,

unsurpassed documentation, and customer support. Starting with Micrium’s flagship product, µC/OS

through its complete line of software, Micrium shortens time to market throughout all product

development cycles and builds products that address today’s increased design complexity.

TRADEMARKS

All trademarks are the property of their respective owners.

http://openmp.org/wp/
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://www.multicore-association.org/
http://www.multicore-association.org/workgroup/mcapi.php
http://www.multicore-association.org/workgroup/mrapi.php
http://en.wikipedia.org/wiki/Asymmetric_multiprocessing
http://en.wikipedia.org/wiki/Symmetric_Multi-Processing

